Clendenen, R. L. \& Drickamer, H. G. (1964). J. Phys. Chem. Solids, 25, 865.
Cramer, E. M., Ellinger, F. H. \& Land, C. C. (1960). Extractive and Physical Metallurgy of Plutonium and its Alloys. p. 169. Ed. Wilkinson. New York: Interscience.
Cramer, E. M. \& Wood, D. H. (1967). J. Less-Common Metals, 13, 112.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Florio, J. V., Baenziger, N. C. \& Rundle, R. E. (1956). Acta Cryst. 9, 367.
Gladyshevskii, E. I., Kripyakevich, P. I., Teslyuk, M. Yu., Zarechnyuk, O. S. \& Kuz'ma, Yu. B. (1961). Sov. Phys. Cryst. 6, 207.
Iandelli, A. \& Palenzona, A. (1967). J. Less-Common Metals, 12, 333.
International Tables for X-ray Crystallography (1962). Vol.III. Birmingham: Kynoch Press.
Jamieson, J. C. \& Lawson, A. W. (1962). J. Appl. Phys. 33, 776.

Johnson, Q. (1962). Lawrence Radiation Laboratory, Livermore, Report UCRL-6816.
Johnson, Q. \& Smith, G. S. (1967). Acta Cryst. 23, 327.
Johnson, Q., Wood, D. H., Smith, G. S. \& Ray, A. E. (1968). Acta Cryst. B24, 274.

Kripyakevich, P. I. \& Evdokimenko, V. I. (1962). Sov. Phys. Cryst. 7, 22.
Kripyakevich, P. I. \& Frankevich, D. P. (1965). Sov. Phys. Cryst. 10, 468.
Kripyakevich, P. I. \& Gladyshevskia, E. I. (1961). Sov. Phys. Cryst. 6, 95.
Kripyakevich, P. I., Terekhova, V. F., Zarechnyuk, O. S. \& Burov, I. V. (1963). Sov. Phys. Cryst. 8, 203.

Kripyakevich, P. I., Tylkina, M. A. \& Savitskii, E. M. (1961). J. Struct. Chem. 2, 395.

Lott, B. G. \& Chiotti, P. (1966). Acta Cryst. 20, 733.
Makarov, E. S. \& Vinogradov, S. I. (1956). Sov. Phys. Cryst. 1, 499.
Ostertag, W. (1965). Acta Cryst. 19, 150.
Ostertag, W. \& Strnat, K. J. (1966). Acta Cryst. 21, 560.

Paine, R. M. \& Carrabine, J. A. (1960). Acta Cryst. 13, 680.

Pearson, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys. Vol.II. New York: Pergamon Press.
Ray, A. E. (1966). Acta Cryst. 21, 426.
Ryba, E. \& Gill, K. J. (1962). Personal communication.
Savitskif, E. M., Terekhova, V. F. \& Burov, I. V. (1960). Tsvetnye Metally, 11, 59.
Savitski, E. M., Terekhova, V. F. \& Burov, I. V. (1962). J. Inorg. Chem. 7, 1335.

Savitskif, E. M., Terekhova, V. F., Burov, I. V. \& Chistyakov, O. D. (1961). Zhur. Neorg. Khim. 6, 1732.
Savitski, E. M., Terekhova, V. F., Burov, I. V., Markova, I. \& Naumkin, O. P. (1962). Rare Earth Alloys, Academy of Science USSR, Moscow, Eng. Trans. AEC-tr-6151.
Savitskif, E. M., Terekhova, V. F., Burov, I. V. \& Naumkin, O. P. (1964). Proc. Fourth Rare Earth Res. Con. p.301. New York: Gordon and Breach.

Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen. Berlin: Springer-Verlag.
Teatum, E., Gschneidner, K. \& Waber, J. (1959). Los Alamos Scientific Laboratory Report LA-2345.
Terekhova, V. F., Maslova, E. V. \& Savitski, E. M. (1965). Izv. Akad. Nauk SSSR, Metal. 128.

Trillat, J. J., Tertian, L. \& Terao, N. (1956). C.R. Acad. Sci. Paris, 243, 666.
Vold, C. L. \& Peterson, D. T. (1961). Ames Laboratory, Ames, Iowa, Report IS-246.
Wang, F. E., Kanda, F. A., Miskell, C. F. \& King, A. J. (1963). Acta Cryst. 16, 697.

Zalkin, A., Bedford, R. G. \& Sands, D. E. (1959). Acta Cryst. 12, 700.
Zalkin, A., Sands, D. E., Bedford, R. G. \& Krikorian, O. H. (1961). Acta Cryst. 14, 63.

Zalkin, A., Sands, D. E. \& Krikorian, O. H. (1959). Acta Cryst. 12, 713.
Zarechnyuk, O. S. \& Kripyakevich, P. I. (1963). Sov. Phys. Cryst. 7, 436.

Refinement of the Crystal and Molecular Structure of Potassium Oxalate Monohydrate

By Derek J. Hodgson and James A.Ibers
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60201, U.S.A.

(Received 14 March 1968)

The structure of potassium oxalate monohydrate, $(\mathrm{COOK})_{2} . \mathrm{H}_{2} \mathrm{O}$, has been refined by least-squares techniques based on three-dimensional X-ray data obtained at room temperature with Mo K α radiation. The material crystallizes with four formula units in space group $C 2 / c$ of the monoclinic system in a cell with dimensions $a=9.222$ (3), $b=6.197$ (2), $c=10.690$ (5) $\AA, \beta=110.70$ (3) ${ }^{\circ}$. The conventional R value on F is 0.039 and the estimated standard deviations of atomic coordinates are of the order $0.001 \AA$. There is a hydrogen bond, $2 \cdot 760(2) \AA$ in length, between one of the oxalate oxygen atoms and the water molecule; the other oxygen atom does not participate in hydrogen bonding. The carboxyl groups are not symmetric, the bond between carbon and the hydrogen bonded oxygen atom being 1.260 (2) \AA and the other C-O bond being $1-247$ (2) \AA. The central carbon-carbon bond is long $-1.574(2) \AA$ - and residual electron density of $0.26 \mathrm{e} . \AA^{-3}$ is found in the center of this bond.

Introduction

The structure of potassium oxalate monohydrate, $(\mathrm{COOK})_{2} . \mathrm{H}_{2} \mathrm{O}$, has been previously investigated by
three-dimensional X-ray (Hendricks, 1935; Pedersen, 1964) and two-dimensional neutron diffraction (Chidambaram, Sequeira \& Sikka, 1964), and also by proton magnetic resonance techniques (McGrath \& Paine,

1964; Pedersen, 1966). A proton-proton distance of 1.5341 (15) \AA, deduced from proton magnetic resonance studies (Pedersen, 1966), is consistent with the value of $1 \cdot 557$ (28) \AA obtained from the neutron diffraction study of Chidambaram et al. (1964). One unusual feature of the hydrogen bonding scheme reported (Chidambaram et al. 1964) is that neither of the non-bonding electron pairs of the water oxygen atom nor their bisectors are directed towards the neighboring potassium cations. The crystal structure proposed involves infinite linear $\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{O}_{4}^{2-}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ chains along [$10 \overline{1}]$, which are linked at non-bonding distances with the potassium cations.

There are considerable differences in the bond lengths reported in various studies of the compound. The C-C bond length of $1 \cdot 585$ (15) \AA in the oxalate fragment reported by Pedersen (1964) differs from the value of $1 \cdot 555$ (12) \AA reported by Chidambaram et al. (1964). Moreover, there is doubt as to whether there is a significant difference between the two $\mathrm{C}-\mathrm{O}$ bond lengths in the oxalate anion, and which, if either, is the longer. In order to resolve these differences and to reinvestigate the hydrogen bonding scheme, an accurate threedimensional single crystal X-ray structural determination was undertaken; the results of this investigation are presented here.

Experimental

Potassium oxalate monohydrate (J. T. Baker, Reagent) was recrystallized from aqueous solution. A crystal specimen of the shape of a parallelepiped of dimensions 0.053 by 0.054 by 0.0091 cm was chosen, and mounted about the c^{*} axis. Preliminary examination on the precession camera confirmed the previous space group assignment of $C 2 / c$ or $C c$. The space group $C 2 / c$ was assumed, and was confirmed by the structure analysis. Intensity data were collected on a Picker fourcircle automatic diffractometer using Mo $K \alpha$ radiation. The mosaicity of the crystal specimen, as judged by the narrow-source, open-counter ω scan through several strong reflections, was acceptably low (Furnas, 1957).

Fifteen reflections were accurately centered using a very narrow vertical slit at a take-off angle of 0.55°; these observations formed the basis for the leastsquares refinement of cell parameters and orientation. The refinement was effected in our program PICK de-
scribed earlier (Corfield, Doedens \& Ibers, 1967). The observations were made at $24^{\circ} \mathrm{C}$ with the wavelength assumed as $\lambda_{\text {Mo }}{ }_{\alpha 1}=0.7093 \AA$. The cell parameters so derived, together with their associated standard deviations, are compared with the previously reported values in Table 1.
Intensity data were collected at a take-off angle of $1 \cdot 0^{\circ}$; at this angle, the peak intensity of a typical strong reflection was 75% of the maximum value as a function of take-off angle. The use of a small take-off angle, while decreasing the integrated count, ensures adequate resolution and allows a smaller scan range. The receiving aperture size selected to minimize extraneous background was 4.0 mm high by 4.0 mm wide; the aperture was positioned 21 cm from the crystal. The data were collected by the $\theta-2 \theta$ scan technique at a scan rate of 1.0 degrees/minute. The scan range for relatively close-in reflections (those with 2θ less than 55°) was 1.3° in 2θ, from -0.50 to $+0.80^{\circ}$ from the calculated 2θ value; the scan range for relatively farout reflections (those with 2θ greater than 55°) was $2 \cdot 0^{\circ}$ in 2θ, from $-0 \cdot 80$ to $+1 \cdot 20^{\circ}$ from the calculated 2θ value. Stationary counter background counts of 10 seconds were taken at each end of the scan. The Mo $K \alpha$ beam was filtered through 4.5 mil Zr foil after diffraction from the crystal; this thickness of Zr foil reduces the intensity of Mo $K \beta$ radiation by approximately 99.4% (Roberts \& Parrish, 1962). Attenuators were inserted automatically when the intensity of the diffracted beam exceeded about 7000 counts/second during the scan; the attenuators used were copper foils, their thickness being chosen to give attenuator factors of approximately $2 \cdot 3$. These attenuator factors were determined by recording the time taken for 10,000 counts to be observed with the various attenuators in the beam. The pulse height analyzer was set for approximately a 90% window, centered on the Mo $K \alpha$ peak.
As a check on electronic and crystal stability during the period of data collection, the intensities of four standard reflections were measured after every 200 reflections. No systematic change in these standards was observed. As a further check, two equivalent members, ($h k l$) and ($\bar{h} \bar{k} \bar{l}$), of the form $\{h k l\}$ of this centrosymmetric monoclinic crystal were measured. A total of 3031 intensities was measured within the sphere 2θ (Mo $K \alpha_{1}$) $575 \cdot 00^{\circ}$. Past this point only a small fraction of the intensities was significantly above background.

Table 1. Unit-cell dimensions (\AA)

a	b	c	β	Reference
9.32	$6 \cdot 17$	10.65	110.97°	Hendricks, 1935
9.21	6.165	10.66	110.9	Pedersen, 1964
9.236	$6 \cdot 190$	10.694	110.78	Chidambaram et al. 1964
$9.222(3)^{\dagger}$	$6.197(2)$	$10.690(5)$	$110.70(3)$	This work

Space group: C2/c, No. 15. Unit cell volume: $571 \cdot 5 \AA^{3}$.
Density calculated: $2.14 \mathrm{~g} . \mathrm{cm}^{-3}, Z=4$. Density obscrved: $2.13 \mathrm{~g} . \mathrm{cm}^{-3}$.
\dagger Numbers in parentheses here and elsewhere in this paper are estimated standard deviations in the least significant digits.

All data processing was carried out as previously described (Corfield, Doedens \& Ibers, 1967). The data were first corrected for background; the correction made is of the form

$$
I=C-\frac{t_{s}}{2 t_{b}}\left(B_{H}+B_{L}\right),
$$

where C is the total integrated peak count obtained in a scan of time t_{s}, B_{H} and B_{L} are the background counts each obtained in time t_{b}, and I is the corrected integrated peak count. The corrected intensities were assigned standard deviations according to the formula

$$
\sigma(I)=\left[C+0 \cdot 25\left(t_{s} / t_{b}\right)^{2}\left(B_{H}+B_{L}\right)+(p I)^{2}\right]^{1 / 2} .
$$

The value of p was selected as 0.06 ; this term in the expression is used to prevent extremely high weight being given to very strong reflections (Busing \& Levy, 1957). The values of I and $\sigma(I)$ were corrected for Lorentz-polarization and for absorption factors. The absorption coefficient μ of this compound for Mo $K \alpha$ radiation is $15.6 \mathrm{~cm}^{-1}$, and for the sample chosen the transmission coefficients evaluated by numerical integration were found to range from 0.54 to $0 \cdot 93$. The values of F^{2} of equivalent reflections were then averaged; the weighted R value on F^{2} for the averaging was 0.060 . The standard deviation of $F^{2}, \sigma\left(F^{2}\right)$, was taken as either the average of the individual standard deviations of the equivalent members, or a value estimated from the range of the F^{2} values of the equivalent members, whichever was the larger. The total number of independent reflections thus obtained was 1518, of which 237 had intensities less than their standard deviations.

Refinement

With four formula units in $C 2 / c$, the water molecule is constrained to lie on the twofold axis. The independent atoms are three oxygen atoms - $\mathrm{O}(1)$ and $\mathrm{O}(2)$ of the oxalate anion, $\mathrm{O}(3)$ of the water molecule one carbon atom, one potassium atom, and one hydrogen atom.

Initial values for the atomic coordinates of the five non-hydrogen atoms were taken from Pedersen (1964). After two cycles of least-squares calculations, a dif-ference-Fourier synthesis was computed; the hydrogen
atom was unambiguously located as the largest peak on the difference map. Least-squares refinements were carried out on F; that is, the function $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized, where $\left|F_{o}\right|$ is the observed structure amplitude, $\left|F_{c}\right|$ the calculated structure amplitude, and where the weights w are taken as $4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$. In all calculations of F_{c}, the atomic scattering factors tabulated by Ibers (1962) were used for K, O and C, and those of Stewart, Davidson \& Simpson (1965) for H. No correction was made for anomalous dispersion, since this is negligible for these atoms with Mo radiation.

The non-hydrogen atoms were assigned variable anisotropic thermal parameters and the hydrogen atom was assigned a variable isotropic thermal parameter; after two cycles of least-squares refinement of the 46 variables using only the 1044 independent reflections whose intensities were more than three times their standard deviations, the usual agreement factors, $R_{1}=$ $\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ and R_{2} (or weighted R factor) $=$ $\left(\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w F_{o}{ }^{2}\right)^{1 / 2}$, were 0.040 and 0.049 respectively. At this stage it was apparent that secondary extinction was significant, since for very strong loworder reflections $\left|F_{o}\right|$ was consistently smaller than $\left|F_{c}\right|$. An extinction correction of the form

$$
F_{o}^{\text {corr }}=F_{o}\left[c \beta(\theta) I+\left(1+c^{2} \beta^{2}(\theta) I^{2}\right)^{1 / 2}\right]^{1 / 2}=g F_{o},
$$

strictly valid only for a spherical crystal (Zachariasen, 1968), was applied; that is, the function $\Sigma w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right| / g\right)^{2}$ was minimized, where c is the extinction coefficient, I the corrected intensity, and $\beta(\theta)$ is as described by Zachariasen (1963). Two further cycles of least-squares refinement reduced R_{1} and R_{2} to 0.037 and 0.048 respectively. A further cycle of least-squares refinement was carried out in which the hydrogen atom was also assigned variable anisotropic thermal parameters; this had little effect on R_{1} but reduced R_{2} to 0.047 .

Examination of the agreement factors for different ranges of $\left|F_{o}\right|$ and $\lambda^{-1} \sin \theta$ showed no unexpected trends. There is no dependence of R_{2} on $\left|F_{o}\right|$. That R_{2} is relatively larger for small values of $\lambda^{-1} \sin \theta$ may result from errors in the model - for example, the neglect of bonding. A final refinement, using the 1154 independent reflections whose intensities were above twice their standard deviations, led to values of 0.039

Table 2. Positional and thermal parameters for $(\mathrm{COOK})_{2} . \mathrm{H}_{2} \mathrm{O}$

	x	y	z	$\beta_{11} a, b$	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
K	$0 \cdot 13179$ (3)	0.83039 (5)	$0 \cdot 13194$ (3)	701 (4)	1331 (8)	427 (3)	-10 (4)	181 (3)	106 (3)
$\mathrm{O}(1)$	$0 \cdot 1258$ (1)	$0 \cdot 2691$ (2)	0.0913 (1)	810 (10)	1710 (30)	620 (10)	-190 (20)	470 (10)	-170 (10)
$\mathrm{O}(2)$	$0 \cdot 3196$ (1)	$0 \cdot 4869$ (2)	$0 \cdot 0924$ (1)	900 (10)	1310 (20)	580 (10)	-260 (10)	320 (10)	-230 (10)
$\mathrm{O}(3)$	0	$0 \cdot 4974$ (3)	${ }^{4}$	1960 (40)	1270 (40)	940 (20)	0	980 (30)	0
C	$0 \cdot 2347$ (1)	$0 \cdot 3257$ (2)	$0 \cdot 0532$ (1)	590 (10)	1080 (20)	336 (9)	30 (10)	192 (9)	10 (10)
H	$0 \cdot 022$ (4)	$0 \cdot 420$ (4)	$0 \cdot 199$ (3)	2400 (600)	1300 (800)	1200 (400)	- 1000 (600)	90 (40)	40 (50)

${ }^{a}$ The form of the anisotropic thermal ellipsoid is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.
${ }^{b}$ The values of β have been multiplied by 10^{5}.

Table 3. Observed and calculated structure amplitudes $(\times 10)$ in electrons

Table 3 （cont．）

－ ＊が

 －Nー
Fo

 N

[^0]

and 0.049 for R_{1} and R_{2} respectively; no shifts of greater than one standard deviation from the values obtained in the previous least-squares refinement were observed. A value of R_{2} on F^{2} of 0.098 may be compared with that of 0.060 predicted from the agreement between equivalent reflections. This again suggests that there are residual errors in the model.

The positional and thermal parameters derived from this last cycle of least-squares refinement are presented in Table 2, along with the corresponding standard deviations in these parameters as estimated from the inverse matrix. The final values of $\left|F_{0}\right|$ (corrected for extinction effects) and $\left|F_{c}\right|$ (in electrons) are presented in Table 3; only the 1154 observations for which $F_{o}^{2}>2 \sigma\left(F_{o}^{2}\right)$ were used in the refinement, and so only these reflections are listed in Table 3. Those reflections for which $F_{o}^{2} \leq 2 \sigma\left(F_{o}^{2}\right)$ all have $\left|F_{o}\right|<2\left|F_{c}\right|$. The final extinction coefficient (in absolute units) is 1.45 (22) \times 10^{-6}. The estimated standard error in an observation of unit weight is 0.94 .

Description of the structure

The overall structure is as found by Pedersen (1964) and by Chidambaram et al. (1964), but there are significant changes in the bond lengths of the oxalate fragment. The labelling scheme is shown in Fig. 1. A projection of the structure perpendicular to the b axis is shown in Fig. 2. The bond lengths and angles of the
oxalate fragment, together with their associated standard deviations, are compared with the previously reported values in Table 4. Also given in Table 4 are bond lengths and angles reported for other oxalate ions. The comparison of our results with the earlier data provides an excellent example of the relative ac-

Fig. 2. Projection of one unit cell onto the (101) plane. K^{+}ions are shown as solid circles. $\mathrm{O}(1)-\mathrm{H}$ hydrogen bonds are represented by broken lines.

Bond	This work	Pedersen ${ }^{\text {b }}$	Chidambaram ${ }^{\text {c }}$	$\left(\mathrm{COONH}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}^{\text {d }}$	$(\mathrm{COOLi})_{2}{ }^{\text {e }}$	$(\mathrm{COOH})_{2} .2 \mathrm{H}_{2} \mathrm{O}^{f}$
C-C	1.5740 (24)	1.585 (15)	1.555 (12)	1.569 (8)	$1 \cdot 559$ (4)	1.546 (2)
C-O(1)	1.2595 (16)	$1 \cdot 238$ (11)	1.273 (13)	$1 \cdot 252$ (6)	$1 \cdot 257$ (3)	$1 \cdot 281$ (2)
$\mathrm{C}-\mathrm{O}(2)$	1-2473 (17)	$1 \cdot 247$ (11)	$1 \cdot 234$ (17)	$1 \cdot 263$ (6)	$1 \cdot 247$ (3)	$1 \cdot 207$ (2)
Angle						
$\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(2)$	126.27 (12)	126.4 (7)	$125 \cdot 1$ (13)	$126 \cdot 0$ (5)	$127 \cdot 1$ (3)	$127 \cdot 1(1)^{g}$
$\mathrm{C}-\mathrm{C}-\mathrm{O}(1)$	$115 \cdot 76$ (14)	$116 \cdot 4$ (7)	$116 \cdot 1$ (12)	117.5 (5)	116.4 (3)	$111.9(1)^{g}$
$\mathrm{C}-\mathrm{C}-\mathrm{O}(2)$	117.96 (13)	$117 \cdot 1$ (7)	118.8 (13)	116.5 (5)	$116 \cdot 5$ (3)	$121 \cdot 0(1)^{g}$

a All distances and angles are uncorrected for the thermal motion.
b Visually estimated X-ray data (Pedersen, 1964).
c Two-dimensional neutron data (Chidambaram, Sequeira \& Sikka, 1964).
${ }^{d}$ Robertson (1965).
e Beagley \& Small (1964).
f Delaplane \& Ibers (1966).
g Delaplane \& Ibers (1969).

Fig. 1. Stereoscopic view of the oxalate fragment showing hydrogen bonding arrangement. There is a center of symmetry midway between the two carbon atoms. The view is normal to the $\mathrm{C}-\mathrm{O}(1)-\mathrm{O}(2)$ plane.
curacies of X-ray counter data, visually estimated X-ray data, and two-dimensional neutron data.

The oxalate anion is not completely planar, but consists of two parallel $\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(2)$ planes separated by approximately $0.016 \AA$. The total bond angle around the carbon atom is $360.0(2)^{\circ}$, but this angle is extremely insensitive to the separation noted, and should not be used as evidence for the planarity of the anion. From a wide survey of carbonyl structures, Hahn (1957) has deduced that a completely ionized carboxyl group has two equal $\mathrm{C}-\mathrm{O}$ bonds of length $1 \cdot 260 \AA$, an $\mathrm{O}-\mathrm{C}-\mathrm{O}$ bond angle of 125°, and two $\mathrm{C}-\mathrm{C}-\mathrm{O}$ bond angles of 117.5°. It is clear from the present work that the carboxyl groups in potassium oxalate monohydrate are not symmetric, the bond between carbon and the oxygen atom not involved in hydrogen bonding [C-O(2)] being significantly shorter than that between carbon and the hydrogen-bonded oxygen atom [C-O(1)]; the difference between these two bond lengths is 0.012 (2) \AA. Moreover, the $\mathrm{O}(1)-\mathrm{C}-\mathrm{C}$ bond angle is significantly smaller than Hahn's value, while the $\mathrm{O}(2)-\mathrm{C}-\mathrm{C}$ bond angle is larger. These data clearly indicate that, as one would expect, the negative charge is preferentially associated with the hydrogen-bonded oxygen atom $[\mathrm{O}(1)]$. This is in marked contrast to the structure of ammonium oxalate monohydrate (Robertson, 1965), where the carboxyl group was found to be symmetric. This difference is presumably due to the use, in the case of ammonium oxalate monohydrate, of protons in the cation to form strong hydrogen bonds to $\mathrm{O}(2)$.

As is found in both ammonium oxalate monohydrate (Robertson, 1965) and lithium oxalate (Beagley \& Small, 1964), the C-C bond is abnormally long. This is possibly explained by the molecular orbital calculations of Brown \& Harcourt (1963), which suggest that the $\mathrm{C}-\mathrm{C}$ bond length in oxalates should be longer than that found in ethane $(1.536 \AA)$. Unfortunately, Brown \& Harcourt's results also suggest that the bond in the non-planar oxalate ion of ammonium oxalate monohydrate should be longer than that found in planar oxalate anions; our value of 1.574 (2) \AA for the very nearly planar oxalate anion in potassium oxalate monohydrate is insignificantly different from Robertson's value of 1.569 (8) \AA for ammonium oxalate monohydrate.

Hydrogen bonding

The coordination of the water molecule in this structure is as found by Chidambaram et al. (1964). The bond lengths and angles associated with the water molecule, together with their estimated standard deviations, are compared with the previously reported values in Table 5. As is usual in X-ray studies, our value for the oxygen-hydrogen bond in the water molecule is much smaller than that found in the neutron study; it is, however, in good agreement with the value found in an X-ray study of oxalic acid dihydrate (Delaplane \& Ibers, 1966). The length of the $O(1) \cdots O(3)$ hydrogen bond found here is consistent with the values reported by Pedersen (1964) and by Chidambaram et al. (1964). The $\mathrm{H}-\mathrm{O}(3)-\mathrm{H}$ bond angle is not significantly different from the value of 104.5° found in water vapor. The $\mathrm{O}(1)-\mathrm{H}-\mathrm{O}(3)$ angle of $165.9(29)^{\circ}$ is significantly different from 180°, as expected for a relatively weak hydrogen bond.

Thermal motions of the atoms

The root-mean-square-amplitudes of vibration of the atoms are listed in Table 6. A stereoscopic view of the oxalate fragment, which also includes the hydrogen bonding arrangement, is shown in Fig. 1. The directions of vibration of the atoms are shown in the Figure. The anisotropy of thermal motion of the potassium ions is small.

Table 6. Root-mean-square amplitudes of vibration (\AA) along principal axes of thermal ellipsoids

	Minimum	Intermediate	Maximum
K	$0 \cdot 1403$ (5)	$0 \cdot 1616$ (5)	$0 \cdot 1693$ (5)
$\mathrm{O}(1)$	$0 \cdot 1268$ (14)	$0 \cdot 1699$ (16)	$0 \cdot 2059$ (16)
$\mathrm{O}(2)$	$0 \cdot 1406$ (16)	$0 \cdot 1639$ (13)	$0 \cdot 1988$ (16)
$\mathrm{O}(3)$	$0 \cdot 1546$ (23)	$0 \cdot 1572$ (25)	$0 \cdot 2837$ (28)
C	$0 \cdot 1258$ (16)	$0 \cdot 1438$ (17)	$0 \cdot 1511$ (17)
H	0.05 (10)	$0 \cdot 25$ (5)	$0 \cdot 32$ (4)

The bond distances shown in Tables 4 and 5 can be 'corrected' for thermal motion using the 'riding' and 'independent' models (Busing \& Levy, 1964). Some of the more important values are listed in Table 7. It is

Table 5. Interatomic distances (\AA) and angles ${ }^{a}\left({ }^{\circ}\right)$ associated with the water molecule

Bond	This work	Pedersen	Chidambaram	$\left(\mathrm{COONH}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}^{6}$
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	2.7602 (17)	2.746 (11)	2.744 (17)	2.743 (6)
$\mathrm{O}(1)-\mathrm{H}$	1.97 (3)	$1.67{ }^{\text {c }}$	$1.792^{\text {c }}$	$1.89{ }^{\text {c }}$
$\mathrm{O}(3)-\mathrm{H}$	$0 \cdot 80$ (3)	$1 \cdot 1$ (1)	0.963 (29)	0.92 (10)
Angle				
$\mathrm{H}-\mathrm{O}(3)-\mathrm{H}$	106.9 (32)	113 (6)	107.9 (43)	$127 \cdot 0$ (5)
$\mathrm{O}(1)-\mathrm{H}-\mathrm{O}(3)$	$165 \cdot 9$ (29)	$167{ }^{c}$	$169 \cdot 1$ (26)	$154 \cdot 3^{\text {c }}$

${ }^{a}$ All distances and angles are uncorrected for thermal motion.

- Robertson (1965).
c Values given with no associated errors are calculated from the parameters reported.
evident that the difference between the $\mathrm{C}-\mathrm{O}(2)$ and $\mathrm{C}-\mathrm{O}(1)$ bond lengths is approximately independent of the model used.

Table 7. Bond lengths corrected for thermal motion (\AA)

\quad Bond	Uncorrected	'Riding'	'In- dependent'
$\mathrm{C}-\mathrm{O}(1)$	$1.2595(16)$	1.271	1.303
$\mathrm{C}-\mathrm{O}(2)$	$1.2473(17)$	1.259	1.288
$\mathrm{O}(3)-\mathrm{H}$	$0.80(3)$	0.81	0.93
$\mathrm{C}-\mathrm{C}$	$1.5740(24)$	1.574	1.600

Residual electron density

A final difference-Fourier synthesis shows no peak higher than $0.33 \mathrm{e} . \AA^{-3}$; this highest peak is close to the potassium ion.* For ammonium oxamate (Beagley \& Small, 1963), lithium oxalate (Beagley \& Small, 1964) and oxalic acid dihydrate (Delaplane \& Ibers, 1969), peaks were found in the center of the $\mathrm{C}-\mathrm{C}$ bond in difference maps; a similar peak, of height $0 \cdot 26$ e. \AA^{-3}, is found in the present investigation. Areas of negative electron density are found in the vicinity of the oxalate oxygen atoms $[\mathrm{O}(1)$ and $\mathrm{O}(2)]$, which is again similar to the findings of Delaplane \& Ibers (1969) in the case of oxalic acid dihydrate. These observations are in agreement with the predictions of Dawson (1965), which have been discussed in detail by O'Connell, Rae \& Maslen (1966); the peak in the center of the C-C bond is believed to be due to the bonding electrons.

[^1]A difference map through the approximate plane of the oxalate fragment is shown in Fig. 3.

In addition to local programs mentioned in the text, programs used in this work were local modifications of Johnson's ORTEP thermal ellipsoid plotting program, Busing \& Levy's ORFLS least-squares and ORFFE function and error programs, Hamilton's GONO9 absorption correction program, and Zalkin's FORDAP Fourier program.
This work was supported by the Advanced Research Projects Agency of the Department of Defense through the Northwestern University Materials Research Center.

References

Beagley, B. \& Small, R. W. H (1963). Proc. Roy. Soc. A 275, 469.
Beagley, B. \& Small, R. W. H. (1964). Acta Cryst. 17, 783.
Brown, R. D. \& Harcourt, R. D. (1963). Aust. J. Chem. 16, 737.
Busing, W. R. \& Levy, H. A. (1957). J. Chem. Phys. 26, 563.

Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Chidambaram, R., Sequeira, A. \& Sikka, S. K. (1964). J. Chem. Phys. 41, 3616.

Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197.
Dawson, B. (1965). Aust. J. Chem. 18, 595.
Delaplane, R. G. \& Ibers, J. A. (1966). J. Chem. Phys. 45, 3451.
Delaplane, R. G. \& Ibers, J. A. (1969). To be published.
Furnas, T. C. (1957). Single Crystal Orienter Instruction Manual. Milwaukee: General Electric Co.
Hahn, T. (1957). Z. Kristallogr. 109, 438.

Fig.3. Final difference-Fourier synthesis through the plane parallel to the $\mathrm{C}-\mathrm{O}(1)-\mathrm{O}(2)$ planes and passing through the center of the $\mathrm{C}-\mathrm{C}$ bond. Contours are at intervals of $0.025 \mathrm{e} . \AA^{-3}$; negative contours are shown as broken lines.

Hendricks, S. B. (1935). Z. Kristallogr. 91, 48.
Ibers, J. A. (1962). International Tables for X-ray Crystallography, Vol. III, Table 3.3.1A. Birmingham: Kynoch Press.
McGrath, J. W. \& Paine, A. A. (1964). J. Chem. Phys. 41, 3551.
O’Connell, A. M., Rae, A. I. M. \& Maslen, E. N. (1966). Acta Cryst. 21, 208.
Pedersen, B. F. (1964). Acta Chem. Scand. 18, 1635.

Pedersen, B. (1966). Acta Cryst. 20, 412.
Roberts, B. W. \& Parrish, W. (1962). International Tables for X-ray Crystallography, Vol. III, p.76. Birmingham: Kynoch Press.
Robertson, J. H. (1965). Acta Cryst. 18, 410.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.
Zachariasen, W. H. (1968). Acta Cryst. A 24, 212.

A Review of the Structure of Silicon Carbide

By P.T. B. SHAFFER
The Carborundum Company, Niagara Falls, New York 14302, U.S.A.

(Received 13 March 1968)
The structure of silicon carbide and its polytypism are reviewed together with a brief discussion of the proposed mechanisms of crystal growth. The unit-cell parameters and stacking sequences are tabulated for 74 polytypes and the atomic positions listed for seven of the most common polytypes. A complete bibliography of the literature pertaining to the structure of silicon carbide is presented.

Introduction

The long-range structure of silicon carbide is extremely complex as a result of the one-dimensional disorder or polytypism. The short-range structure is simple, a fourcoordinate, diamond-like arrangement of alternate silicon and carbon atoms. Since approximately 75 structures have been identified, and many completely determined, it seemed desirable to bring these data together for reference. While many are in the literature available to most researchers, a number of others are reported in Soviet and Chinese literature, and as such are less readily available.

Since no mechanism of crystal growth has been completely accepted, or has fully explained the formation of crystal structures having unit cells of the order of one thousand layers long, brief descriptions of several theories will be presented, without attempting to make a choice, merely to point out obvious failings and strong points of each.

The system of nomenclature used in this description of the various polytypes (Baumhauer, 1915) will, unless otherwise stated, be that of Ramsdell (1947). This convention is to assign a number corresponding to the number of layers in the hexagonal unit cell and a letter suffix designating the crystal symmetry: C, cubic; H, hexagonal; R, rhombohedral.

Description of the basic structure

Early work on the crystallography of SiC was devoted to goniometric studies of interfacial angles (Acheson,

1893; Baumhauer, 1912; Becke, 1895; Negri, 1906; Peacock \& Schroeder, 1934; Peacock, 1934; Cortellezzi \& Schroeder, 1934), which in the earliest studies showed at least two polytypes present in the first samples (Acheson, 1893). Morphological studies also showed the intergrowth of two or more polytypes within a single crystal (Baumhauer, 1915).

Early etching studies (Becke, 1895a,b) showed the different chemical behavior of the opposite basal planes (Figs. 1 and 2).

The first true structural studies were based on the work of Hull (1919, 1920), Ott (1925a, b, c, d,e. 1926, 1928) and others (Braekken, 1930; Espig, 1921; Hauer \& Koller, 1916).

The structure of SiC can be described in several ways. For example the spatial location of each atom may be given. This is completely unambiguous, but for most purposes over complicated. The symmetry of a plane of atoms, resulting from the relative positions of the two adjacent layers can be designated; using this system the relation between layers of wider separation is not readily shown. Still other descriptions are based on the relative position of the various layers. One of the simplest is based on the relative orientation of layers of tetrahedra.

All silicon carbide structures are made up of a single basic unit, a plane of tetrahedra, arbitrarily either SiC_{4} or CSi_{4}, shown in Fig.3. Successive layers can arrange themselves in one of two ways: parallel or antiparallel, as shown in Fig. $4(a)$ and (b).

Arbitrarily designating one orientation ' a ', the other ' b ', the parallel stacking of layers leads to an ' $a a$ ' se-

[^0]:

 ＊ 0000 NNNNNNNN＋＊

[^1]: * The estimated standard deviation, $\sigma(\Lambda \varrho)$, is $0 \cdot 12$ e. \AA^{-3}

